行列式提取公因子

升学辅导 / 高中辅导 / 高中数学

  1. 91搜课网
  2. 91搜课网

    2022-07-17 16:43

行列式提取公因子

行列式提取公因子为:根据行列式的基本性质将所有行的元素都加到任意一行。出现行列式的行,全部的列的元素都相加的结果是一样的时候,要将所有行或所有列加到一起。最后应该把第1列当中的元素“3+λ”提取出来。

扩展资料:
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。
无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。
5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

来自

本文仅代表作者观点。未经许可,不得转载!

赞同

推荐课程查看全部

位置:北京91搜课网 > 学习攻略 > 行列式提取公因子

0.347304s